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The most widely used algorithm for Monte Carlo sampling of electronic transitions in trajectory
surface hopping TSH) calculations is the so-called anteater algorithm, which is inefficient for
sampling low-probability nonadiabatic events. We present a new sampling sc¢balfed the army

ants algorithm for carrying out TSH calculations that is applicable to systems with any strength of
coupling. The army ants algorithm is a form of rare event sampling whose efficiency is controlled
by an input parameter. By choosing a suitable value of the input parameter the army ants algorithm
can be reduced to the anteater algorithwhich is efficient for strongly coupled casesnd by
optimizing the parameter the army ants algorithm may be efficiently applied to systems with
low-probability events. To demonstrate the efficiency of the army ants algorithm, we performed
atom—diatom scattering calculations on a model system involving weakly coupled electronic states.
Fully converged quantum mechanical calculations were performed, and the probabilities for
nonadiabatic reaction and nonreactive deexcitatgprenching were found to be on the order of
10" 8. For such low-probability events the anteater sampling scheme requires a large number of
trajectories (10 to obtain good statistics and converged semiclassical results. In contrast by
using the new army ants algorithm converged results were obtained by runmirtgajEtories.
Furthermore, the results were found to be in excellent agreement with the quantum mechanical
results. Sampling errors were estimated using the bootstrap method, which is validated for use with
the army ants algorithm. @004 American Institute of Physic§DOI: 10.1063/1.164101]9

I. INTRODUCTION the classical trajectories in the ensemble to make sudden
The most accurate way to describe a chemical syste|ﬂOIOS (also called switghe}sbetween the COUp.led potential
theoretically is to treat the entire system quantum mechaniE"€rY surfaces. Specifically, each trajectory in the ensemble

cally. Currently, however, exact quantum mechanical calcu!S Propagated independently, and at small time intervals
long each trajectory, a hopping probability is computed.

lations on chemical systems have been restricted to smafl | e
chemical system&nvolving two to six atoms for electroni- Tully proposed a fewest-switches prescription for the hop-

cally adiabatic processes and two or three atoms for eled?ing probability such that th_e nuclear and (_alectronic degrees
tronically nonadiabatic processesecause of the computa- ©f freedom evolve self-consistent§In the widely used ant-
tional cost involved. On the other hand, classical mechanicgater implementation of TSH, trajectories hop between states
may be used to model much larger systems but this is inadccording to the hopping probability.
equate for systems where quantum effects play an important In general, the strength of the coupling between the po-
role. “Semiclassical” dynamical methods attempt to find antential energy surfaces governs the probability of nonadia-
effective compromise between an entirely quantum mechanpatic events and also the number of trajectories required in
cal treatment and completely classical treatment. In théhe ensemble to obtain converged results using the anteater
present paper we are concerned with semiclassical trajectoinplementation of TSH. For example, if the probability of a
methods, in which quantum mechanics is used to treat thaonadiabatic event is on the order of f0or 10 2, then
electronic degrees of freedom, and the nuclear degrees #iree to five thousand trajectories are required to obtain good
freedom are modeled as an ensemble of classical trajectoriegtatistics, whereas in cases where the potential energy sur-
This kind of semiclassical method has been widely used fofaces are very weakly coupled, and nonadiabatic events are
electronically nonadiabatic collisions and photochemical rerare, e.g., on the order of 18, the anteater algorithm re-
actions, and several reviews are availdbfg. quires on the order of £arajectories to sample even a single
Trajectory surface hoppingl'SH) method$*~>*are one  nonadiabatic event, and sampling with good statistics is im-
group of semiclassical trajectory methods which incorporatgractical. In fact, adequate sampling is already impractical
electronic transitions into the overall dynamics by allowingfor nonadiabatic probabilities on the order of P0 There-
fore, it has not been possible to model polyatomic systems
3Electronic mail: nangia@tL.chem.umn.edu with weakly coupled surfaces using the available TSH algo-
PElectronic mail: truhlar@umn.edu rithms. In this paper, we present a new algorittwalled the
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army ants algorithinthat is designed to efficiently handle transitions may occur. At each decision pointhich we la-
weakly coupled systems. This new algorithm may be considbel by their timest,) the electronic transition probability
ered a form of rare event sampling for the nonadiabatic proP,_,,(t,) is computed, where is the occupied potential
cesses. Although rare event sampling has been widely stu@nergy surface antl is the target potential energy surface.
ied, and many algorithms are availabe®® essentially all The TFS method defineB, .,(t,) based on the local net
previous work has been based on transition state concepfisix of probability density such that the self-consistency of
where the sampling occurs at a reasonably well-localized dyelectronic and nuclear motions is maintairféd>3° (Actu-
namical bottleneck, whereas the present algorithm can treatlly, when “frustrated hops” are encountered, this self-
rare and delocalized nonadiabatic events that may occur abnsistency is also frustrated. We defer consideration of this
any point along a trajectory. aspect to Sec. Ill.Tully*®>??proposed two schemes for sam-
One motivation for our recent studies of TSH methodspling P,_.,(t,) along the classical trajectory, which he called
has been to test them against accurate quanturthe ants and the anteater algorithms.
dynamics?®27:32-34.36,41-44.46.8acause it has been impracti- Before we discuss the ants and the anteater algorithms, it
cal to study dynamics for systems with very small semiclasis useful to introduce the concept of extended trajectory
sical transition probabilities, these tests have been carried ogpace. For electronically adiabatic processes, trajectories are
for systems with nonadiabatic probabilities 0k30 # and  specified by a sequence of points in phase space. One can
larger. The army ants algorithm allows us to extend thessample trajectory space by sampling initial conditions of the
tests down to much lower probabilities; for example, in thetrajectories, i.e., by sampling phase space. Surface hopping
present paper we present well-converged calculations for &ajectories in contrast, are specified not only by their initial
system with a nonadiabatic transition probability of phase points and initial surface but also by the times on
1x 108, We will test not only the Tully’s fewest switch®s phase points at which the hops occur. The space of all sur-
(TFS) surface hopping method, but also a variant of the TFSace hopping trajectories will be called extended trajectory
method called the fewest-switches with time uncertaintyspace, and the ants algorithm, anteater algorithm, and new
(FSTU) surface hopping meth8¥ that was previously algorithm are all methods for sampling extended trajectory
showrf®® to be more accurate than the TFS method forspace.
nonadiabatic probabilities in the rangex10 2 to 3
X 1074, In particular we test the original version of the TFS
method (TFS with reflection at frustrated hops, called TFS  In the ants algorithd? each trajectory in the ensemble
—) and three versions of the FSTU method (FSTU begins the simulation on a particular potential energy surface
FSTU+, and FSTWV). All of these methods can be applied and is integrated to the first decision potgt at which it
with either the anteater schenfehich was first denoted splits into two branches. One branch continues to follow the
“anteater” by Tully?® or the new army ants sampling initial potential energy surface and is called the nonhopping
scheme. branch, whereas the other branch hops to follow the unoccu-
In addition, we validate the bootstrap method for esti-pied potential surface and is called the hopping branch. Each
mating Monte Carlo sampling errors. Although formulas for of these resulting branches is assigned a weight according to
sampling errors can be derived for many of the quantitieghe transition probability?, ,,(t;) such that the total weight
and algorithms employed in trajectory calculatidnghere  of both branches adds up to one, i.e.,
are many other cases where error formulas are hard to derive.
The army ants algorithm provides an example of such a
problem. The bootstrap metHd® provides a general solu- Wpon=1—P_p(tn),

tion to the problem of estimating sampling errors, and in th%herewh is the weight assigned to the hopping branch, and
present article we validate it and use it successfully for thig, is tﬁg weight assigned to the nonhopping branch, The
non .
pur;:/c\;/se. e th - i lqorithms in S branches are then propagated independently, and each of
= summarlze the exiSing sampling algoriinms N Secy,qp, proceeds to additional decision points. The final weight

::I %I[]r? pres(;anlt thetdetalls Sffthet;?rmylanltst_algor_lth(;n n iec f each branch is the product of all weights assigned at every
- 'he model system used for the calculations 1S desCrbe e qiqiqn point in that branch’s history. As a result, the

in Sec. IV. Section V contains the formulas for analysis of

final product states. The bootst thod of vsi weights assigned to each branch get smaller and smaller as
Inal product states. the bootstrap method of erroranalysis ig,o mper of branches gets larger and larger. The repeated
presented in Sec. VI. Section VIl provides details of all cal-

._branching process results into a swarm of trajectories that is
Qnalogous to a swarm of ants—hence the name, ants method.
Mhe advantage of this method is that it allows a trajectory to
follow nonadiabatic events independent of the weights of the
magnitudes of their probabilities. However, this is also the
major disadvantage of the ants method. An ants simulation
In the TSH method, an ensemble of trajectories is usedvith Ny decision points would result inN2ec branches for
to model the nuclear dynamics, and each trajectory evolvesach initial trajectory(Note that several initial trajectories
classically under the influence of a single potential energyare required to sample the initial conditions of the system.
surface. The single surface propagation is interrupted atvhen the ants method was first proposed, the primitive tra-
small time intervals by decision points at which electronicjectory surface hopping algorithms then in use restricted sur-

IILA. Ants algorithm

Whop™ Pa_b(tn),

@

is provided in Sec. VIII and conclusions are presented i
Sec. IX.

Il. SAMPLING ALGORITHMS FOR TSH
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face transitions to predefined seams, thus keelipgsmall. ~ ping branch is one, i.e., the weight of the nonhopping branch
However the modern algorithms based on fewest-switchels Waon =1—(P1_o+ Py _3+,...,Py_¢+,...,P1 ). Each
considerations allow hopping decisions after every time stegf the hopping branches and nonhopping branch propagate

independently, branching further at decision points. Thus the
II.B. Anteater algorithm total number of branches would H&Ndec for each initial

) _ _ trajectory.
The anteater method is the most widely used sampling

algorithm for TSH simulations. In the anteater algorithm, the

branching event is replaced by a stochastic event. Specifi-

cally, the nonadiabatic transition probabilif§, .,(t,) at !ll- ARMY ANTS ALGORITHM
each decision point,, is compared to a random numbkgr
between 0 and 1. IP,_ (t,) is greater tharn, the hopping
branch is followed and is assigned weight 1. The nonhoppin
branch is not followed and is assigned a weight of 0, i.e.,

Consider a weakly coupled system with a nonadiabatic
reaction probability of~10 8. Since it requires on the order
%f 100 reactive trajectories to obtain reasonable final-state
statistics for a given final electronic state, the anteater algo-
Whop=1, rithm would require a minimum of 28 trajectories to obtain
2) reasonably converged results. In the ants algorithm, every
trajectory would sample the low-probability events, but the
If P, (t,) is less than\, the nonhopping branch is fol- large number of resultant branches makes the ants method
lowed, and the trajectory remains on the initial potential surcomputationally expensive to implement, as described ear-
face with weights lier. We propose a new algorithm, called the army ants algo-
rithm, that is capable of performing calculations for systems
with weakly coupled electronic states.
Wipor= 1. 3 In essence, the army ants method incorporates the sto-
. chastic elements of the anteater metiod., nonadiabatic
This sche_me gets_ the name anteater from the analogy tha_t Wents do not occur at every time step but instead occur
_anteatfar is most I|I_<ely to follow the path where the pmbab"'randomly according to some sampling probabjliag well as
ity of finding ants is greatest. - . . .. the branching elements of the ants metiioe., trajectories
Each anteater trajectory finishes with a weight of unity ;e propagated with fractional weightsBy allowing

on one O.f the two potenFlaI energy surfaces and fm"’." resl.mBranches to propagate with fractional weights, the ants algo-
are obtained .by averaging over many an.teater tra]ecm”??ithm is able to sample the critical regions of extended tra-
The anteater implementation of TSH is widely used and i ectory space, including those associated with low-
entirely satisfactory for systems where the coupling betwee robability ever,1ts that the anteater algorithm “misses” when
the potential energy surfaces is large enough that ths PTO%Re number of trajectories is too small. In fact the army ants
ability of nonadiabatic events is on the order of 16.10°%, algorithm reduces in certain limits to the ants or anteater

o ) algorithms, as described later in this section.
II.C. Generalization to more than two electronic states The army ants algorithm is defined in terms of a param-

In cases with more than two coupled potential energyeter» such that &= »=1. The value ofy is compared to the
surfaces, the ants and the anteater algorithms are slightfjonadiabatic probability?, ., at each decision poinf,. The
more complicated. Consider a system wizoupled poten-  dreater of the two values is calleg,:
tial energy surfaces, where surface 1 is occupied initially. ”
At the first decision point, the transition probabilites  yn=ma (4)

Paﬂb(tn)-
from surface 1 to each of the other target surfaces are
Py .2,P1.3,....P1q,....P1_s. For the case of multiple In order to determine whether branching is allowed at that

potential energy surfaces the varialig,, is the sumP;_; decision point a random numbgrbetween 0 and 1 is drawn

Wnon=0.

Whop: O,

over alli#], wherei is the current surface. and compared to/, with the following consequences:
In the anteater algorithm, the transition probabilities are )\ ~., - no branching,
compared to a random numberbetween 0 and)lto deter- (5)

mine the surface on which to continue the trajectory. Ahop  A<y,: branching.

to surface 2 occurs iA<P;_,, a hop to surface 3 if |, 4 nonbranching case, the trajectory moves on to the next
P1_.2<A<Pj_,+P; 5, and so on. If no hop occurs, the yecision point while remaining on the current surface. If, on
trajectory remains on surface 1. In any event the trajectoryo other hand, branching occurs, then the branch weights

then moves on to the next decision point. Wiop fOr the hopping branch an,,, for the nonhopping
In the ants algorithm, branching is allowed at every de,anch are calculated as follows:

cision point from potential energy surface 1 to all the other

unoccupied potential energy surfaces. The weight of a hop- ~ Pa_p(tn)

ping branchwﬁo_,;g from surface 1 to surfacg, shown ex- Whop™= Yo o

plicitly by the superscript 4-g, is determined by the tran- (6)
sition probability for that surface, i.ewﬁ;)g:Plﬂg. The Wion=1— Pa*b(t”)_

total weight of all of the hopping branches and the nonhop- Yn
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Another random number is drawn and the hopping branch ifas units of inverse tim@nd can be considered analogous to
propagated if the random number is greater than 0.5, otheg first-order rate constgntThe inputk value is then multi-
wise the nonhopping branch is followed, i.e., one followsplied by the instantaneous time stéyi, at each decision
each branch 50% of the time, even though they have differpoint n, to obtain a unitless time-dependent variable given
ent weights. We can summarize a successful branching evehy

as follows: n=KAt,. )

Step 1. Initiate a trajectory from the ensemble on theBy allowing 7 to vary in this way at each decision point, we
appropriate potential energy surface, and at each decisig#n regulate the branching because an integrator with vari-
point t, computeP,_(t,). able step size can take small steps on the potential energy

Step 2. Obtainy,=max 7,Pa_p(tn) | surface where the potential is steep, but a smaller valug of

Step 3. Generate a random numhgrbetween 0 and 1. in this region will prevent excessive branching events. Con-

Step 4. Compare,, and\. Branch if\;<y, and calcu-  versely,k mode allows for more branching in the areas on

late Wiop and Wi the potential energy surface where the potential is flat and the
Step 5. Generate another random numbebetween 0 integrator takes large steps.
and 1. The input parametek can have any value, but a good

Step 6. Choose the hopping branchN§>0.5, and Vvalue fork can be obtained from

choose the nonhopping branch otherwise. Topt

= , 8

It should be noted that the army ants algorithm reduces Atayg ®
to the anteater algorithm fop=0, since the maximum of wherez, is an optimal value for, andAt,,is the average
[0,P._p(ty)] at every decision point yields,=P,_(t,) time step of the integrator. For the present paper, this ap-
which on substitution in Eq6) results in branch weights for proach was used to obtain tleparameter for th&k mode
the anteater algorithm as in Eq®) and (3). On the other army ants calculations.
hand the army ants algorithm can be reduced to the ants It should be noted that decision points occur all along the
algorithm by choosingy=1. In this case, the value of, is  classical trajectory, even when the system is far from the
equal to 1(since y,=max1,P, (t,)]) at every time step, region of maximum coupling. When this is the casg,,
and substitution in Eq(6) then results in ants algorithm may be several orders of magnitude smaller than probabili-
weights as in Eq(1). The parameter, therefore plays a role ties of interest. In the army ants algorithm, the hopping
in the efficiency of the calculation, and in fagt may be branch is followed 50% of the time independent of the mag-
optimized for this purpose. Depending upon the magnitudeitudes of weights, but the branch may have a very small
of coupling, the amount of branching character can be reguweight such that it will not contribute significantly to the
lated by choosing the most appropriate valuenofThis at-  final results. We therefore introduce a cutoff parametgy
tribute makes the algorithm universally applicable to anysuch that ifwp,,<w, att,, the hopping decision is ignored
kind of system, irrespective of the strength of coupling be-att,,. For all calculations in the present article we 8gt,
tween the electronic states. equal to X 10~ 2°,

It is important to notice that all three trajectory surface Since the new algorithm is more evolved and more effi-
hopping sampling algorithmsgants (p=1), anteater ff cient than the previous ones, we named it the army ants
=0), and army antgnonintegern)] achieve the same results algorithm in recognition of a highly organized species of ants
in the limit of infinite sampling, i.e., the choice afdoes not called army ants inhabiting the equatorial forest of planet
affect the results for a large sample. Earth. In particular, a collection of army ants, taken as a

The army ants algorithm can be implemented in twowhole, functions as a well-integrated social entity with the
different ways, depending on howis chosen. We label the extraordinary ability of forging into unknown territory, and
first implementation as “fixeds mode” and the second we can hope that our collection of trajectories is equally
method as k mode,” the reasons for which are given in the adept at sampling an unknown extended-trajectory-space and
following: discovering its most significant features.

(1) In fixed-» mode, 7 at every step is set equal t@,, The extension of army ants algorithm to more than two
which is an input parameter in this mode. This parameter isurfaces is straightforward. For example, for three surfaces
the target value of the fraction of decision points at which aone would follow each surface one-third of the tiifa ran-
branch occurs. For example, in the system considered in thidJom) at each branching point. Actually, one will stay unbi-
paper, a typical trajectory encounters abbiyt.=900 deci- ased even if one changes the fraction of the time that each
sion points. If one’s target is for every trajectory to branch atsurface is followed. If one were especially interested in the
six time steps and not branch at the remaining steps, ondetailed product distribution on surface 2, one could follow
should sety, equal to 6/900 or about¥10 3. Depending surface 2 at 70% of the branchéshosen at randojmand
upon the amount of branching desired, any value can beurfaces 1 and 3 at 15% each. In the present paper we have
chosen fory,, provided only that it is a number between 0 two surfaces, and we follow each surface at 50% of the
and 1. branches.

(2) In k mode, the distribution of branching points is We have discussed three sampling schefagss, ant-
independent of the time step taken by the integrator. Theater, and army ant$or TSH. We next discuss several vari-
input parameter in this implementation is a constiarthat  ants of the TSH approach that differ in their treatment of
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frustrated hops. Any of the sampling schemes can be comFABLE I. Vibronic thresholds(eV) for the YRH test systems.
bined with any of these variants, and in the present article we
will illustrate the new army ants algorithm with four of the
variants, namely TFS, FSTU—, FSTU+, and FSTWV. 0 0.942 0.582 0.185

In trajectory surface hopping calculations, trajectories * 1.292 0.932 0.543

Y* +RH(»,j =0) Y +RH(»,j=0) R+YH(»,j=0)

makg sudden hops from an occupieq surface to a target po- i:gig i:égg (1)'2??
tential energy surface, and the potential energy of the system

changes discontinuously when the system hops. To conserve

the total energy of the system, the kinetic energy of the sys-

tem on the new surface is adjusted by changing the nuclear i} _ R+YH(»',j’), reaction
momentum along the hopping vectéin the present paper, Y*+RH(v,j)— Y +RH(v",j"), quenching, 9

the hopping vector is always a unit vector parallel to the

nonadiabatic coupling vectat, a choice that has been pre- Where Y, R, and H are model atoms, the asterisk denotes
viously been justified by theoretical arguménfé and by  €lectronic excitation, and the primes and double primes de-
testing® against accurate quantum mechanical calculationsnote the quantum numbers of the diatomic molecules associ-
At certain points a|ong a trajectory, a hopp|ng attempt from @ted with the reactive and quenChed molecular arrangementS,
lower-energy to a higher-energy electronic state may occuf€spectively.

such that the kinetic energy associated with the component The probability of the scattering process resulting in re-
of nuclear momentum along the hopping vedids less than ~ action is calledPr, whereas the probability of a quenching
the potential energy gap between the occupied and the targBfocess is represented Bg . The sum of these probabilities
electronic states. Such hops are classically forbidden, and af@ the total nonadiabatic probabilitPy for a system to
called “frustrated hops.” Frustrated hops are common inémerge in the ground electronic state in a scattering event,
semiclassical trajectory calculations, and various prescrip-€:

tions have been proposed to treat frustrated hops. Earlier p —p_4 Po. (10)
treatments include ignoring the frustrated hop, denoted by )

“+,” or reflecting the nuclear momentum alomg denoted The details of the model YRH system have been re-
by “—.” When implemented with the TFS method, these Ported in earlier WO."% in which a family of four YRH po-
choices are labeled TESand TES-. The TFS- scheme is tential energy matricePEMs was introduced. Briefly, the
the original version of TFE26” and TFS+ was introduced Masses of Y, R, and H are taken as 10, 6, and 1.00783 amu,
later?® although a combination of and — was used even respectively. The model Y atom is electronically excited with
earlier in a general surface hopping schéfhim our group, ~ €Nergy equal to 0.36 eV, and the equilibrium bond energies
we compared the performance of these variantdr the RH and YH molecules are 3.9 and 4.3 eV, respec-
systematicallf? and then introduced a new method of treat-iiVely. The zero point energies of RH and YH are 0.18 and
ing the frustrated hops, called the fewest-switches time unQ-19 €V, respectively. The coupled potential energy surfaces
certainty (FSTU) method*® The FSTU method is like TFS @€ defmgd in the diabatic representation to havze qualita-
except that where frustrated hops are encountered the systdf¥ie!y similar shapes to those for the’8f H, systent The

may hop nonlocally. In the FSTU method, some hops remai¢Nergy gap between the two potential energy surfa¢gs
frustrated, and these can be ignofee) or cause reflection @ndUz;remains almost constant at 0.36 eV as Y approaches
(—), yielding FSTU+ and FSTU-. Another FSTU prescrip- RH_, and the dlab_atlc (_:oupllngl_z is localized in the inter-
tion proposed recently is the FSTW5® scheme that uses the ac_t|0n region. Ad|a_1b_at|c pote_ntlal energy s_urfaces were (_)b-
gradient information of the target potential surface to deter{@inéd by diagonalizing m‘z diabatic potential energy matrix,
mine how momentum will be treated at frustrated hops. ~ @S described elsev_vhezré.' o _

We performed calculations on a realistic model system Because the diabatic coupling is nonzero only in the re-
called the YRH system using the above-noted variants of thgion where all atoms are interacting, the diabatic and adia-
TSH approach along with the anteater and army ants sanflic representations are the same in the asymptotic regions.
pling algorithms. Details of the YRH system are provided in!f the classical minimum energy of the4RYH products is

the following section. defined as zero, we then obtain the values in Table | for the
various vibronic thresholds. It is also of interest to give the
IV. THE YRH MODEL SYSTEM energies of a few rotationally excited states:

The YRH model systefff is a three-body system that ~ Y* TRH(»=0, j=1), 0.945eV,
has been developed in our group to study weakly cquple_d R+YH(»' =1, ’=12), 0.813eV,
systems. The model reaction is an electronically nonadiabatic
scattering process between an excited atorh ahd a Y+RH(v'=1, j"=3), 0.954eV,
ground-electronic state diatomic molecule RH in a specific y A
guantum state,j), wherev the vibrational quantum num- Y+RH('=1,]"=5), 0.987eV.
ber, andj is the rotational quantum number. In addition to Each member of the family differs from the others only
electronically adiabatic, nonreactive scattering, the collisiorin the magnitude of the diabatic coupling surface, and each
can result in two possible outcomes as shown in the followimay be labeled by the maximum value of its diabatic cou-

ing equations: pling U7y, For the present work, we have extended the
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YRH family of four surfaces (7#*=0.2, 0.10, 0.03, or 0.01 €vant subset of trajectories. To estimate the sampling errors

eV) to include a very Weak|y Coup]ed system with the maxi_in all the above observable quantities, we use a new method
mum diabatic coupling) T2*=0.0001 eV. We will focus spe- described in the following section.

cifically for the present work on the set of coupled potential

energy surfaces withJ5*=0.0001 eV in order to demon-

strate the efficiency of the army ants algorithm, although wey| BOOTSTRAP RESAMPLING:

also report some preliminary calculations with[%*  METHOD OF ERROR ANALYSIS

12
=0.2 eV.
The bootstrap meth84 of error analysis is a resam-

pling technique that can be used to estimate the sampling
distribution of any well-defined function of sampled data. In
The final product analysis for army ants trajectories re-general, resampling techniques are widely used statistical
quires an ensemble of trajectories, for which informationtools that are favored by virtue of their robustness and sim-
about the final arrangement and the final weight is known foplicity. In cases where there is no information about the un-
each trajectory. Each trajectory in the ensemble, denoted bgerlying distribution of the sample and no analytical formu-
indexi, finishes the simulation with some weight that is  las are available, this method proves to be very useful.
the product of the weights assigned to it at every decision In the army ants method, branching is a stochastic pro-
point along the propagation of the trajectory. By using thecess, but due to the fractional weight carried by the trajecto-

V. FINAL STATE ANALYSIS

histogram method@?2’ each electronically nonadiabatic tra- ries the usual Monte Carlo error formufasnnot be applied.
jectory is also assigned valugs; for three of the applicable
final quantum numberu,, where u,=v', usz=j', ua4
=v", us=j", and u4 is the final electronic-arrangement
quantum number, which is assigned as 1 for*¥-RH, 2
for R+YH, and 3 for Y+ RH. Note thatuy;, wy;, andus;
are assigned ikk=2, anduq;, mai, andusg are assigned if
a=3.

If the total number of trajectories Ny,;, then the prob-
ability of a given electronic arrangement is

D iNtraJ'\/\/i 5,“1' «
Po=—— (11
Wtot
where
Ntraj
Wio= 2 W;. (12)

We also labelP, asPg (R denotes reactionand P; as P
(Q denotes quenchingThe total probability of an electroni-
cally nonadiabatic outcome By and is defined in Eq.10).

The final quantum states of the diatomic products are calc

Error analysis was therefore carried out by the bootstrap re-
sampling method.

The bootstrap method was first introduced by Efron and
was named with the notion of pulling oneself out of the mud
by one’s own bootstrag¥.In particular, in cases where the
knowledge of the distribution is lacking, the sample itself
may be taken as the best guide to the sampling distribution.
The bootstrap method is applicable to our problem because
our sample is unbiased and also is uncorrelated. In the boot-
strap method, the initial sample is resampled by creating
large number of bootstrap samples. The bootstrap estimation
procedure consists of the following steps:

(1) Take the original data set withN data points:
(X1,X2,...Xj,....Xn) @nd call it B,. Calculate the statistic of
interest, which in this example is the mean

(2) Draw a sample olN data points at random “with
replacement” from the initial set Band name the new set
bootstrap sample 1 (B. All data points for B are selected
from By at random, using a random number generator, in

(such a way that once a data point has been drawn its value is

lated according to the following equations using the energy€corded in B, and itis replaced back ingto assure that in

nonconserving histogram method, as discussed elsewhere

the next draw all the data points again have equal probability

The first moments of the final vibrational and rotational of being drawn. It is therefore likely that some data points in

guantum numberg,, are given by
N .
Ei lra]ll'LriVVi 5/’“1iar

— 5 (13
W’[Otp a,

(pr)=

wherea,= a3=2 anda,= as= 3. Note thatP, is the mean
over all the trajectories, anf,) is the mean over the rel-

the new set will occur more than once. Calculate the statistic
of interest &) for B, just as it was done for & Call thisx; .

(3) Repeat, the second st&p times, whereM is a large
number, to produce B...,B,,...,By . Calculate the statistic
of interest &) for each of them. Label these, .

(4) Calculate the average value of the statistic of interest
over all the bootstrap cycles by

TABLE Il. Results for anteater and army antgy=0) calculations using the FSY method, for the ¥ +RH (v=0,j=0) system with a total energy of

1.10 eV and withUT5*=0.2 eV using 100 000 trajectories.

Method 70 Pr (v') (" Pq (v") ("
Anteatef (1.38+0.03)x 10 2 1.11+0.02 12.8-0.13 (4.39:0.07)x 10 2 0.98+0.01 6.31-0.07
Army ant® 0.0 (1.41-0.03)x 102 1.12+0.02 12.8-0.13 (4.42-0.06)x 102 0.97+0.01 6.30-0.07

@Anteater calculations using the original, unmodified method and the Monte Carlo error formula of Ref. 3.
PAnteater calculations were done using the army ants algorithm ##tld. The errors were estimated using 10 000 bootstrap cycles.
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TABLE IlI. Bootstrap analysis resuftdor army ants calculationfs.

Niraj Pr ") 1" Pq ") an

100000 (1.36:0.034)<10 8 1.33+0.019 12.50.115 (3.28:0.046)<10 8 1.13+0.010 4.83-0.071
200000 (1.340.023)<10°8 1.30-0.014 12.7-0.09 (3.31-0.031)x10°® 1.14+0.007 4.830.059
300000 (1.3%0.020)<10 8 1.31+0.011 12.7-0.067 (3.33:0.025)x10 8 1.13+0.006 4.84-0.041
400000 (1.36:0.019)<10°8 1.31+0.008 12.6-0.051 (3.38:0.021)x10°® 1.13+0.006 4.870.037

8 rror estimates were calculated using 10 000 bootstrap cycles.
PArmy ants calculations were performed in the fixgdrode withz,=1X 102 using the FSTWV method for
Y*+RH (v=0,j=0), for the total energy 1.10 eV witb[5*=0.0001.

=M Xm implementation with,=0; in both cases we propagated
Mbootstrap™ — \p (14 100000 trajectories, and we used the adiabatic representa-
tion. The results obtained by both of the methods are shown
(5) Calculate the standard deviation of the calculatedn Taple II. The nonadiabatic probabilitieBg andPq , with

value of the statistic using their respective vibrational and rotational moments, show
EM(Ym—Mbootstraﬂz very good agreement between the methods. The error analy-
Thootstrag™ i M —1 (15  sis for the observable quantities in the army ants case was

done by the bootstrap technique using 10000 bootstrap

The bootstrap method is very general. We expect, focycles.(A study of convergence with respect to the number
example, that the bootstrap method will be very useful forof bootstrap cycles is given in Appendix)AThe bootstrap
calculations employing smooth sampling methddcause error estimates of army ants run, shown in Table II, match
standard error formulas are not applicable to smooth samyell with the anteater analytical error estimates. This con-
pling results. In both histogram and smooth sampling calcufirms that in the limit of7,=0, the bootstrap method can be
lations the final observables are weighted means, but thgccessfully applied to obtain the same error estimates as
bootstrap analysis does not require this, and it can be used {&ym the analytical formula.

estimate the sampling distribution of any well-defined func- 14 check the bootstrap method for the army ants calcu-

tion of the sample data. lations for values ofy, other than 0, we performed calcula-
tions on larger sets of army ants trajectories for the optimum
VII. CALCULATIONS AND RESULTS 7o value of 1x1072. The aim of this calculation was to

The semiclassical calculations were done using versioialidate that the bootstrap method is applicable for the army
7.0 of the nonadiabatic trajectory surface hopping codénts algorithm. The error estimates are presented in Table IIl,
NAT.% Our first objective was to confirm that both anteater@nd it can be seen that in most cases the bootstrap error
and army ants results converge to the same semiclassic@$timates for the observable quantities decrease approxi-
result. Also, we wanted to compare the army ants bootstraprately by the inverse of the square root of the number of
error estimates with the anteater error estimates that weféajectories used for the calculations, which is the Monte
obtained using the analyti#brmula. Therefore, we applied Carlo result that is expected on general principles. This fur-
both the anteater and army ants sampling schemes to tfieer validates the use of the bootstrap method for analyzing
YRH system with relatively strong coupling’3*=0.2 eV the results of army ants calculations.
for which anteater results have already been repSrt€l- To test the merit of the new algorithm we applied the
culations were performed using the FSTWmethod for the army ants algorithm to a system for which anteater calcula-
original, unmodified, anteater algorithm and for the newtions are not computationally affordable. In particular, the
army ants algorithm in the anteater limit in the fixed- army ants algorithm was used fo*¥- RH (v=0,j =0) with

TABLE IV. Results for Y*+RH (»=0,j=0) system for the total energy 1.10 eV with3*=0.0001 eV in the fixeds mode of army ants algorithm, for
100 000 trajectories.

Time®

Method 70 Pr (") 4" Pq (") in (h)

Quantum  --- 1.21x10°8 0.90 11.6 3.3%10°8 0.93 3.28
Anteatef 0.0 a ‘e e of ‘e S 9.4
TFS— 1.0x10°? (1.35+0.04)x 1078 1.30+0.02 13.4-0.11 (3.59-0.05)x 108 1.19+0.02 5.03-0.07 10.2
FSTU- 1.0x10°? (1.39+0.03)x10°8 1.23+0.02 12.3-0.09 (3.39-0.05)x 1078 1.07+0.01 5.17-0.09 9.9
FSTU+ 1.0x10°? (1.38+0.03)x 10" 8 1.24+0.02 12.2-0.10 (3.38:0.05)x 10" 8 1.07+0.01 5.17-0.09 10.0
FSTUVV 1.0x1072 (1.33+0.03)x 10" 8 1.33+0.02 12.5-0.11 (3.28:0.05)x 10" 8 1.13+0.02 4.83-0.07 10.0

8 rror estimates were calculated using 10 000 bootstrap cycles.

b0On four processors.

“Anteater calculations for 100 000 trajectories fail to show any statistics.
dLess than 10°
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TABLE V. Results for calculations using FSMY method for Y* +RH (v=0,j=0), for the scattering energy 1.10 eV with[3*=0.0001, using 100 000
trajectories for both modes of army ants algorithim.

Input Time®
Mode parameter Pr (v") 4" Pa ") Gm (h)

Fixed-7 1.0x1072 (1.330.03)x 1078 1.33+0.02 12.5:0.11 (3.28:0.05)x 1078 1.13+0.02 4.83-0.07 10.0
ke 7.95x 102 (1.34+0.03)x10°8 1.34+0.02 12.3:0.11 (3.34:0.05)x 10~ 8 1.15+0.01 4.65-0.07 10.2

8 rror estimates were calculated using 10 000 bootstrap cycles.
®On four processors.
°In units of s,

a scattering energy of 1.1 eV and with®=0.0001 ev. dix C shows that the results vary systematically with energy
Table IV shows the results obtained and the computer tim&ithout significant oscillations so for testing the semiclassi-
taken for the calculations using TFS FSTU—, FSTU+, cal methods we need not be concerned with oscillations.
and FSTWWV method in the fixeds mode of army ants and Therefore, we compared the semiclassical army ants algo-
a value of 7, value of 1x 10~ 2. The criterion used for the rithm results and quantum mechanical scattering calculations
choice of 7, is discussed in Appendix B. The army ants at three different scattering energies centered at 1.10 eV. In
results are very Converged well for 100 000 trajectories_ |rparticular, for both methods, the results were obtained for
contrast, the anteater calculations failed to provide any elecY* + RH (»=0,j=0) with U77"=0.0001 eV at three values
tronically nonadiabatic final states in 100000 trajectories©f the total energy, namely 1.07, 1.10, and 1.13 eV. The army
The error estimates on the observable quantities, Pg,,  ants calculations were performed using the F§Wmnethod
Paq, ("), (j"), (¥"), and(j") were calculated using the in the fixed# mode with 7, equal to 1x 1072 All guantum
bootstrap resampling technique described in Sec. VI. For thBlechanical calculations were obtained by the outgoing wave
purpose of comparison the quantum mechanical scatteringgriational principlé®="?using version 18.8 of ther com-
results at scattering energy 1.10 eV are also shown ifuter cod€ The calculations involve 18 934 basis functions
Table V. (13884 square-integrable functions and 5050 non-square-
In order to demonstrate the alternatikemode imp|e_ integrable functionsin 334 channelg73 channels corre-
mentation of the army ants algorithm, we performed thesponding to Y +RH, 107 corresponding to ¥RH, and
FSTUVV calculations with same initial conditions as those 154 corresponding to RYH); other details of the calcula-
for the fixeds mode in Table V. We used a variable-step-sizetions have been reported earltéhe accurate quantum cal-
Bulrisch—Stoet>®integrator, and the value of the input pa- culations are well converged to at least the number of sig-
rameter wask=7.95x 10" s~ %, which was obtained using nhificant figures shown in the tables, as demonstrated by their
Eq. (8) with the optimum value ofygy=1X 102 and an Stability to increasing the number of basis functions and
average integrator time stefy,,= 1.26 fs (obtained by tak- channels in each arrangement and increasing the number of
ing an average over a small set of trajectori@e results —quadrature points. The comparison of quantal and semiclas-
for both fixed# mode anck mode calculations are summa- Sical results is presented in Table VI.
rized in Table V. Both methods require about the same com-
p_utgr time and converge _to the same results, therefore CONI DISCUSSION
firming that the two implementations can be used
interchangeably. The results obtained by the army ants calculations indi-
Since quantum mechanical scattering results sometimasate a very significant improvement in efficiency as com-
oscillate as a function of scattering enefyve carried out pared to the existing surface hopping algorithms. It was
guantum mechanical calculations at seven energies. Appefound that 100 000 army ants trajectories running in parallel

TABLE VI. Results for quantum mechanical scattering and semiclassical army ants calculatiofis{f&H(v=0,j =0) with U75*=0.0001 eV. The results
are compared at the three energies and also averaged over three values of scattering energy.

Method Energy(eV) Pr (v') G’y Pq (") aGm
Quantum
1.07 8.64<107° 1.01 11.4 2.8%10°8 0.97 2.24
1.10 1.21x10°8 0.90 11.6 3.3%10°8 0.93 3.28
1.13 1.33x10°8 0.78 12.4 3.2810°8 0.90 3.60
Average 1.1%x10°8 0.89 11.8 3.1610°8 0.93 3.04
Army ant$
1.07 (1.16-0.03)x10°8 1.41+0.02 12.6:0.12 (3.64-0.05)x 1078 1.16+0.01 4.48-0.06
1.10 (1.33-0.03)x10°8 1.33+0.02 12.5-0.11 (3.28-0.05)x10°8 1.13+0.02 4.83-0.07
1.13 (1.29-0.03)x 10" 8 1.40+0.02 12.5-0.12 (3.04-0.05)x 10" 8 1.15+0.01 4.84-0.08
Average (1.26:0.03)x10°8 1.38+0.02 12.3:0.12 (3.32:0.05)x10°8 1.15+0.01 4.72-0.07

3Calculations were performed in the fixegmode of the army ants algorithm witho=1x 102 using the FSTWV method for 100 000 trajectories.
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TABLE VII. Time required for calculations on ¥+RH (»v=0j=0), for  able impediment to carrying out semiclassical trajectory sur-
the scattering energy 1.10 eV with{3*=0.0001 eV using either the fixeg- face hopping calculations on weakly coupled systems. In

mode or thek mode implementation of army ants algorithm, and estimated . .
time requirement to obtain similar converged results with the anteater ang’omraSt’ the new and flexible army ants algorlthm can be

the ants methods. adapted to systems with any kind of coupling, ranging from
weak to strong.
Number of trajectories Time required The availability of well converged surface hopping cal-
Method Initial Final (h) culations for a system with such a small probability of elec-
Army anté ¢ 0 1o tr_onically nonadigbatic events aII_ows us to test the semiclas-
AnteateP 1010 1010 1P sical simulations in a new dynamical regime where they have
Ants® 500 5x 1027 ~3X 1079 never before been able to be tested. Table VIII shows the

mean unsigned relative errors. The average absolute error in
the nonadiabatic reaction probability is only 15%, and that in

+ processors on the IBM SP supercomputer. . . RO 0

PEstimated time required to finish the anteater calculations using the sam@e nonreactive quenChmg prObab'“ty 1S Only 8%. The aver-

number of processors as in the army ants calculations. age errors in the moments range from 7% to 58%. Consid-

“Estimated time required to finish the initial ants trajectories and all theering the highly quantal character of these weakly allowed

resulting branches, using the same number and type of processors as in tB?OCESSES the semiclassical methods are surprisingly accu-
army ants calculations. rate !

&Time required to run in parallel on four 375 MHz Power 3 WinterHawk

on four 375 MHz Power 3 WinterHawk processors of IBM

SP supercomputer take about 10 h to complete. There ajg cONCLUSIONS

three slave processors running trajectories and one master

processor in control which is not load balanced; therefore the  The army ants algorithm is an efficient method for com-
computer time is between 30 and 40 processor hours. For thauting the probabilities of nonadiabatic events in weakly
purpose of demonstration we hypothetically assume propazoupled systems. Since all trajectory surface hopping algo-
gating trajectories by the existing anteater and ants method&hmes, i.e., anteater, ants, and army ants, give the same con-
and compare the time required for each of them to give aerged results in the limit of infinite sampling, one may
converged result for the YRH system withJ3*  choose the algorithm that is most efficient. The present study
=0.0001 eV. In the ants method a single initial trajectoryshows that the army ants algorithm is useful and accurate for
taking toNgec. number of decision points equal to 900 resultssystems that are intractable by the two other sampling algo-
in 299%< 107" branches. In order to average over the initial rithms that have been proposed.

conditions we will need a minimum of 500 trajectories which The army ants algorithm successfully captures the most
leads to an extraordinarily large number of resultantdesirable aspects of both the ants and anteater algorithms.
branches, 500 10?"*~5x 10°"3 each of which(on an aver- The new army ants algorithm retains the ants feature of as-
age would be integrated for half as long as an army ants osigning fractional weights to the daughter trajectories, and it
anteater trajectory. The time taken to complete this antalso incorporates the stochastic nature of the anteater algo-
simulation is shown in Table VII. Consider now running ant- rithm. The method is designed in such a way that it can be
eater trajectories for the system with the nonadiabatic probapplied to systems irrespective of the strength of the cou-
ability of the order of magnitude-10~8. This also requires pling between the potential energy surfaces, thus providing a
a large number of trajectories because a single nonadiabatieneral algorithm for performing trajectory surface hopping
event will be experienced in approximately®1ajectories  calculations.

and in order to get good statistics we would need a total of at The present article also provides the first application of
least a hundred nonadiabatic events which leads- 1®'°  the bootstrap method for error estimation in molecular tra-
trajectories. (Recall that we want enough reactive and jectory calculations. The method is quite successful, and it
guenched trajectories to converge the quantum number mahould be useful for error estimation in general, not just for
ments, i.e., averages of the classical analogs of the final viarmy ants calculations.

brational and rotational quantum numbgr§he calculated Finally, the new algorithm allows us to test the trajectory
time required for this hypothetical simulation is also reportedsurface hopping method for much weaker transition prob-
in Table VILI. abilities than has ever before been possible. For a transition

The huge computational requirements of the anteateprobability of the order 10°, the mean unsigned relative
(~10° h) and ants £ 3x 107%° h) methods were an insuper- error in the six observables that were calculated is only 26%.

TABLE VIIl. Mean unsigned relative error§in %) for reaction probability, reactive moments, quenching
probability, and quenching moments.

Cases Pr (v') an Pq (v") im

All 62 15 48 7 8 21 58

®Results are averaged over the four cases in Table IV and the three cases in Tébleaviotal of six cases
since FSTWV at 1.10 eV occurs in both tables
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TABLE IX. Convergence test with respect to number of bootstrap cycles. The army ants calculations were carried out in fhenéigedwith ,=1.0
%10 2, using the FSTWV method, for Y* +RH (»=0,j=0), with scattering energy 1.10 eV at3*=0.00012

Number of Time?
bootstrap cycles Pr (v'") G Pq ") am (min)
5000 (1.33:0.032)x 1078 1.33+0.02 12.5-0.11 (3.28:0.048)x 1078 1.13+0.02 4.83:0.08 5.3
10000 (1.33:0.034)x 10" 8 1.33+0.02 12.5-0.11 (3.28-0.046)x 108 1.13+0.02 4.83-0.07 9.8
20000 (1.330.034)x 108 1.33+0.02 12.5-0.11 (3.28-0.046)x 108 1.13+0.02 4.83-0.07 21.2

2100 000 trajectories used for the bootstrap analysis.
bComputer time for the bootstrap analysis on a single processor.
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Foundation under Grant No. CHE00-92019. In the fixed# mode of the army ants algorithm, the
value of the input parameten, controls the number of
branching events that occur along each trajectory. The

APPENDIX A CONVERGENCE WITH RESPECT amount of branching that is desired can depend upon the

TO NUMBER OF BOOTSTRAP CYCLES strength of the coupling between the potential energy sur-

The bootstrap method of error analysis resamples th&ces. As mentioned in Sec. lll, the value gf can be any
original data set by randomly selecting data points from théiumber such that€ n,<1, but the efficiency of the calcu-
original sample, with replacement, to generate a large numlation can depend strongly o, . An efficient value ofr, is
ber of bootstrap cycles, as explained in Sec. VI. To determin@ne that requires the least number of trajectoNgg to ob-
the number of bootstrap cycles required for the error analysitin results for the observable quantits and(u,) that are
of the army ants runs, convergence studies of the error estfonverged to same small errakg, . To determine the most
mates with respect to the number of bootstrap cycles weréfficient value ofy, for the weakly coupled model systems
performed. Bootstrap analyses were carried out for varioustudied hergspecifically for Y*+RH (»=0,j=0) at scat-
numbers of cycles using the results obtained by the FBTU tering energy 1.10 eV withJ75”=0.0001 eV], calculations
method with the army ants algorithm in the fixedmode were performed for a range of, values using the FSTW
with 7, equal to 1X10 2 for Y*+RH (»=0,j=0) with  method, as shown in Table X. The results for the probabili-
UT¥=0.0001 eV at scattering energy 1.10 eV. Table IXties, i.e.,Pg, Pq, and for the moments, i.e(»’), (j'),
shows the values of the bootstrap averages and error esfi#”), and(j"), along with the error estimates, are shown in
mates for 5000, 10 000, and 20 000 bootstrap cycles and thEable X. Error analyses were carried out using the bootstrap
computer time taken by each of the runs. Notice that thenethod with 10 000 bootstrap cycles for eaghvalue.
computer times for analyses are less that 1% of the computer With 7,=1x10"%, good convergence was obtained
time required to run the trajectories, which is between 30 anavith 500 000 trajectories, which is a fairly large number due
40 processor hours for Qrajectories. It was found that to the fact that at small values @f, the number of branching
10000 bootstrap cycles yield good convergence, and ther@vents encountered by each trajectory is small. Sipge
fore 10 000 bootstrap cycles are used for the bootstrap analy=1x10"* provided the largest sampled space, we used the
ses in this paper. values in row 1 along with the Monte Carlo error formula

TABLE X. Effect of the parameter, in the fixeds mode army ants algorithm calculations, fof ¥ RH (»=0,j=0), with scattering energy 1.10 eV and
U5*=0.0001, using the FSTWV method?

7o Nira’ Pr ") (an Pq ") an Nfa® N

1x107% 500000 (1.16:0.101)x10°8  1.24+0.05 13.1-0.33 (3.510.121)x10°® 1.04-0.02 5.470.18 500000 500 000
5%x10°4 300000 (1.23:0.091)x10°% 1.30-0.05 13.2:0.29 (3.23-0.110)x10°® 1.05+0.02 5.12-0.16 247116 300000
1X10% 200000 (1.240.092)<10°® 1.33:0.05 12.8:0.27 (2.83:0.111)x10°® 1.10:0.02 528:021 167029 272222
5x10°° 100000 (1.25:0.045)x10 8 1.30+0.03 13.0:0.16 (3.12:0.057)<10°® 1.13+0.01 5.10-0.10 22429 30864
8x107° 100000 (1.280.034)x10°% 1.32:+0.02 12.5:0.12 (3.18:0.048)x10°® 1.15:0.01 4.67-0.08 15554 30250
1x10°2 100000 (1.330.034)x10°® 1.33+0.02 12.5-0.11 (3.28:0.046)x10°® 1.13+0.01 4.830.07 14280 25000
2x102 150000 (1.36:0.022)x10 8 1.32+0.01 12.4-0.07 (3.31:0.032)x10°® 1.17+0.01 4.30-0.05 10261 37500
5x1072 400000 (1.10.021)x10 % 1.24+0.01 11.9-0.08 (3.08:0.033)<10 % 1.16+0.01 4.50-:0.06 29475 100000
1x10°! 500000 (1.29:0.032)x10°® 1.31+0.06 12.10.11 (3.21:0.033)x10°% 1.13+0.02 4.720.07 50821 500000

8Error estimates were calculated using 10 000 bootstrap cycles.

®Number of trajectories used for this row of results.

“Maximum of the two values of the number of trajectories required to convggand Pq to the same levels as row 1, as estimated by usingEb).
dMaximum number of trajectories required for convergence of all moment quantjii€s (j'),(»"), and(j")) to the levels of row 1, as estimated by using
Eq. (B1).
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TABLE XI. Results for quantum mechanical calculations as a function of scattering energy for the initial
condition Y*+RH (v=0,j=0) with U7;*=0.0001 eV.

Energy(eV) Pr (v (i Pq () (")
1.07 8.64<107° 1.01 11.4 2.8%10°8 0.97 2.24
1.08 8.6%10°° 0.80 12.5 3.06610°8 0.95 2.52
1.09 9.7%107° 0.85 12.1 3.2%10°8 0.93 3.00
1.10 1.2x10°8 0.90 11.6 3.3%10°8 0.93 3.28
1.11 1.3%10°8 0.83 11.9 3.3x10°8 0.91 3.54
1.12 1.3%10°8 0.77 12.3 3.2%10°8 0.90 3.61
1.13 1.3%10°8 0.78 12.4 3.2&10°8 0.90 3.60
Average 1.1x10°8 0.85 12.0 3.1%10°8 0.93 3.11
1 Trends in Chemical Reaction Dynamiedited by X. Yang and K. Liu
Asgx (Bl) (World Scientific, Singapore, in press
‘/Ntraj 1A, Bjerre and E. E. Nikitin, Chem. Phys. Lett, 179 (1967.

15R. K. Preston and J. C. Tully, J. Chem. Ph§4, 4297 (1971).
to estimate the number of trajectories needed to obtain the &A. Komornicki, T. F. George, and K. Morokuma, J. Chem. P165.48
least as small as in row 1 fd?g andPg, and the larger of (1976 ) _
the two values is listed ablf, in Table X. Similarly, the 7 % <tz % Kendrick, and W, Né%’i?ﬁ“i”ﬁygi?éfggé??(1979'
maximum value of the estimated number of trajectorieSoy g Herman, J. Chem. Phy81, 754 (1984, '
needed for good convergence (@t least as good as row 1 ?N. C. Blais, D. G. Truhlar, and C. A. Mead, J. Chem. Ph§8, 6204
(v'), (i), (¢"), and(j") is listed asNyy; in Table X. From (1988 _
Table X, it can be concluded that the least number of trajeczzJG' CP a{'j'lr; i”%ﬁég' g:}gsgorloélffggg)' PI§/5.4416(1989.
tories required to obtain the same relative errors as obtained; ¢ Tyily, Int. 3. Quantum Chem., Quantum Chem. Sy, 299
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